Solar wind up to the lower boundary of ENLIL

Rui Pinto, Alexis Rouillard

Rui PINTO (IRAP, U. Toulouse / CNRS)

The solar wind and the solar cycle

McComas et al. (2003)

Solar minimum

Fast wind / slow wind separation Dipolar large-scale magnetic field, few AR

Solar maximum

Fast wind / slow wind mixed together Multipolar large-scale magnetic field, many AR

Rui PINTO (IRAP, U. Toulouse / CNRS)

Goals

- Predict wind parameters from surface data
- Data: in-situ data ↔ remote sensing

Goals

- Predict wind parameters from surface data
- Data: in-situ data ↔ remote sensing

Going beyond WSA

- \rightarrow Wind speed at different heights
- \rightarrow Other plasma parameters (density, temperature, etc)
- \rightarrow Add *minimal* amount of complexity

New strategy

Multi-VP

Multiple 1D flux-tube wind solutions sampling the whole corona.

(Mid-way between specialised local models and global 3D MHD models)

Surface magnetic field B_r (±30 G)

←
 MULTI-VP

 ↓
Heliospheric propagation models
(ENLIL)

Earth / interplanetary medium In-situ data, heliospheric imaging

PFSS field lines positive/negative polarity

Earth / interplanetary medium In-situ data, heliospheric imaging

Wind speed: red = 650 km/s; blue = 350 km/s

Coronal B-field reconstruction (PFSS SolarSoft)

MULTI-VP

Heliospheric propagation models (ENLIL)

Earth / interplanetary medium In-situ data, heliospheric imaging

Wind speed: red = 650 km/s; blue = 350 km/s

Prototype wind maps

Carrington maps 2008/06/01

Wind speed at r = 32 R_{\odot}

Carrington long.

Temperature at r = 32 R_{\odot}

Model physics

$$\begin{aligned} \partial_t \rho &+ \nabla \cdot (\rho \mathbf{u}) = \mathbf{0} \\ \partial_t \mathbf{u} &+ (\mathbf{u} \cdot \nabla) \, \mathbf{u} = -\frac{\nabla \left(P + P_{\mathbf{w}}\right)}{\rho} \\ &- \frac{GM}{r^2} \hat{\mathbf{r}} + \nu \nabla^2 \mathbf{u} \\ \partial_t T &+ \mathbf{u} \cdot \nabla T + (\gamma - 1) \, T \nabla \cdot \mathbf{u} = \\ &- \frac{\gamma - 1}{\rho} \left[\nabla \cdot F_h + \nabla \cdot F_c + \rho^2 \Lambda \left(T\right) \right] \end{aligned}$$

(F_h : external heat flux;

 F_c : SH conductive flux, transition to ballistic flux) Ideal e-o-s with $\gamma = 5/3$

Magnetic field inclination:

 $\Rightarrow -g_0 \cos \alpha$, $\nabla P \cos \alpha$, heat fluxes $//\mathbf{B}$

(cf. Li, et al., 2011, Lionello, et al., 2014)

Divergence operator:

$$\nabla \cdot (*) = \frac{1}{A(r)} \frac{\partial}{\partial r} (A(r) *) = B \frac{\partial}{\partial r} \left(\frac{*}{B}\right)$$

(Grappin et al., 2010; Pinto et al., 2009; Verdini et al., 2012) Standard phenomenological heating flux:

$$F_{h} = F_{p0} \left(\frac{A_{0}}{A}\right)^{(-1)} \exp\left[-\frac{r - R_{\odot}}{H_{p}}\right]$$

where $\left(\frac{A_0}{A}\right)^{(-1)} = \left(\frac{B}{B_0}\right)$, and $H_p \sim 1 \ R_{\odot}$.

Other forms, Alfvèn wave dissipation:

$$F_{h} = F_{b0} \left(\frac{A_{0}}{A}\right) \left(\frac{B}{B_{0}}\right)^{\mu-1} = F_{b0} \left(\frac{B}{B_{0}}\right)^{\mu}$$

where, typically, $\mu - 1 = 1/2$.

$$F_w = F_{w0} * WKB$$
 operator

Localised heating (emulating, e.g, transient ohmic dissipation):

$$F_r \propto erf(r_0, \delta r) \Rightarrow \nabla \cdot F_r = F_{r0}e^{-rac{(r-r_0)^2}{\delta r^2}}$$

Reference surface flux: $F_0 = 4 - 8 \times 10^5 \text{ erg} \cdot \text{cm}^{-2} \text{s}^{-1}$

Key parameters

1) Super-radial expansion

Fast to moderately slow winds (fast/slow wind not sharp enough, slow wind not slow enough)

2) Field-line inclination

around coronal streamers (makes the slow wind slower, by $\sim 15\%$)

3) Appropriate heating functions (how much energy, where it's dissipated)

Calibration and case-studies

Aflvén wave power and spectra in coronal holes

(Morton, Tomczyk, Pinto, submitted)

CME shock propagation

(Rouillard, Pinto, et al, in prep)

Summary and conclusions

New wind model in construction (based on a mature wind code): Synoptic maps of wind speed and plasma parameters at 30 - 60 R_{\odot} (WP6) Propagation: flow and phase speeds (photosphere to heliosphere)

Strengths

- quick and robust
- good thermodynamics (not polytropic, chromo+TR+corona)
- Slow / fast wind
- Predicts wind speeds and temperature, density, phase speeds

Limitations

- 1D (even if multi-1D)
- Flux-tube geometry only as good as reconstruction method allows
- Steady-state background wind
- Simplified chromosphere (requires calibration of *T*, *ρ* at the TR)

Future and on-going work:

- Calibration, case studies (multi-spacecraft data, IPS)
- Performance optimisation
- Detailed synoptic maps of wind speed, density, temperature, phase speeds

References I

- R. Grappin, J. Léorat, S. Leygnac, and R. Pinto. Search for a self-consistent solar wind model. Twelfth International Solar Wind Conference, 1216:24–27, March 2010. URL http://adsabs.harvard.edu/abs/2010AIPC.1216...24G.
- D. J. McComas, H. A. Elliott, N. A. Schwadron, J. T. Gosling, R. M. Skoug, and B. E. Goldstein. The three-dimensional solar wind around solar maximum. *Geophysical Research Letters*, 30:24–1, 2003. URL http://adsabs.harvard.edu/abs/20036eoRL.30j. 24M.
- Scott W. McIntosh, Robert J. Leamon, Joseph B. Gurman, Jean-Philippe Olive, Jonathan W. Cirtain, David H. Hathaway, Joan Burkepile, Mark Miesch, Robert S. Markel, and Leonard Sitongia. Hemispheric Asymmetries of Solar Photospheric Magnetism: Radiative, Particulate, and Heliospheric Impacts. *The Astrophysical Journal*, 765:146, March 2013. ISSN 0004-637X. doi: 10.1088/0004-637X/765/2/146. URL http://adsabs.harvard.edu/abs/2013ApJ...765..146M.
- R. Pinto, R. Grappin, Y.-M. Wang, and J. Léorat. Time-dependent hydrodynamical simulations of slow solar wind, coronal inflows, and polar plumes. Astronomy and Astrophysics, 497:537–543, 2009. URL http://adsabs.harvard.edu/abs/20094/266...497..537P.
- Andrea Verdini, Roland Grappin, Rui Pinto, and Marco Velli. On the Origin of the 1/f Spectrum in the Solar Wind Magnetic Field. The Astrophysical Journal Letters, 750:L33, May 2012. URL http://adsabs.harvard.edu/abs/2012ApJ...750L..33V.