HELCATS

WP 3

Deriving/cataloguing the kinematic properties of STEREO/HI CMEs based on geometrical and forward modelling

Overview

Volker Bothmer \& WP3 Team
HELCATS AM, 18-19 May 2015, Göttingen, Germany

WP 3-Objectives

- To obtain the kinematic properties for the STEREO/HI CMEs in the catalogue established in WP2, through application of geometrical and forward-modelling techniques to the HI data
- To augment the STEREO/HI CME catalogue with the model results, and supply those results as input for comparisons with coronal source and in-situ observations in the validation of WP4
- To update the STEREO/SECCHI/COR2 CME catalogue, initiated under the SOTERIA FP7 project, until the end of 2011 (including the application of forward modelling to the appropriate CMEs)
- To compare the results from the geometrical and forward modelling of HI CMEs with the modelling results for COR2
- To prototype the use of inverse modelling to derive typical HI CME parameters (speed, size, mass), for photospheric and low coronal source regions typically associated with CMEs

WP 3 - Task Summary (PMs: UGOE 21, tcd 15, Stec 9, unigraz 6)

- Task 3.1: Geometrical modelling of STEREO/HI CMEs (Task leader: STFC; Additional participant: UNIGRAZ)
Instruments used: STEREO/HI
Role of participants: STFC: J-map provision/CME extraction; STFC and UNIGRAZ: geometrical modelling application and development Presentation by P. Barnes (STFC)
- Task 3.2: Forward modelling of STEREO/HI CMEs (Task leader: UGOE)

Instruments used: STEREO/SECCHI/HI, COR2
Role of participants: This task will be undertaken by UGOE.
Presentation by A. Pluta (UGOE)

- Task 3.3: Inverse modelling of STEREO/HI CMEs (Task leader: UGOE; Additional participant: TCD)
Instruments used: STEREO/SECCHI/HI, COR2
Role of participants: UGOE: modelling; TCD: source region input expertise.
Presentation by P. Gallagher (STFC)
- Task 3.4: Comparison of modelling results (Task leaders: RAL, UGOE; Additional participant: TCD)
Instruments used: STEREO/SECCHI, SOHO/MDI, SDO/HMI
Role of participants: RAL will collate, with input from all participants.

WP 3 - Deliverables

- D3.1: Provision of time-elongation (j) maps for the CMEs in the STEREO/HI catalogue (from WP2), and incorporation of the results of the geometrical fitting into the catalogue (first release in M12, updates to follow, type: O, lead: STFC)
- D3.2: Incorporation of the results of the forward-modelling techniques into the CME catalogue established in WP2 (M 12, updates to follow, type: O, lead: UGOE)
- D3.3: Report on modelling results (M 36, type: R, lead: RAL)
- D3.4: Report on prototype inverse model based on photospheric and low coronal source region characteristics for 3-D HI CME structure (M 36, type: R, lead: UGOE)

Update Task 3.1 - Geometrical modelling of STEREO/HI CMEs Task leader: STFC; Additional participant: UNIGRAZ

- Geometrical modelling of the STEREO/HI CMEs identified and catalogued in WP2
- Creation of J-maps for backward (to source regions) and forward extrapolations (for solar system applications)
- Derivation of CME kinematic properties (propagation speed, direction and potentially size, launch time, source region location) and augmentation of the CME catalogue with these results (for comparisons with WP4 tasks 4.1 SR and 4.2 in-situ)
- Compilation of a catalogue of CME arrival time estimates at Mercury, Venus, Earth, Mars and Saturn as support to European-funded space missions around these planets.
- Integration of the catalogues in AMDA, offering access to the catalogues to the community of planetary scientists that use the European Research infrastructure (EUROPLANET)

Deliverable in PY 1

D3.1: Provision of time-elongation (j) maps for the CMEs in the STEREO/HI catalogue (from WP2), and incorporation of the results of the geometrical fitting into the catalogue (first release in M12, updates to follow, type: O, lead: STFC)

WP 3 - Predicting In Situ Arrival Times using Geometrical Modelling

- The catalogue of geometrically-modelled CME speeds/trajectories are also used to generate a catalogue of in situ CME arrival time estimates at Mercury, Venus, Earth, Mars, and Saturn, thereby providing support to European-funded space missions around these planets
- Using state of the art SSEF geometric model
- A user friendly package in the IDL programming language has been created to read in the geometrically modelled CME catalogue files and output the predicted arrival time files for any of the in situ locations.

WP 3 - Predicting In Situ Arrival Times using Geometrical Modelling

```
\square STRRE-A__EARTHARRVALS_SSEF30.VO1.Lxt - Notepad
File Edit Format View Help
VARIABLES:
    1: id-Unique CME identifier
    2: de7ta of CME apex to target (which is difference in longitudes between centra`
    CME direction and target location)
    3: ICME corrected speed at target location
    4: ICME arrival time at target location
    5: target distance from Sun in AU
    6: target latitude in degrees HEEQ
    7: target longitude in degrees HEEQ
```

- ■ \quad ㅁ

HCME_A_20071220_01

HCME_A_20080409_01 HCME_A _ 20080521 01 HCME_A_20080602_01 HCME A - 20080607 -01 HCME-A -20080607_01 HCME_A -20080721_01 HCME_A_20080807_01 HCME_A _ 20080820_01 HCME_A_20080913_01 HCME_A -_20081004_01 HCME_A ——20081010_01 HCME_A_20081013_01 HCME_A_20081103_01 HCME_A__20081202_01 HCME_A__20081212_01

20.0	260
23.0	271
25.0	214
20.0	266
28.0	261
24.0	277
4.0	363
29.0	194
27.0	194
21.0	282
26.0	221
15.0	301
13.0	242
21.0	383
17.0	240
29.0	312

2007-12-26T15:10Z 0.9838139 2008-02-19T22:16Z 0.98730455 2008-04-17T14:31Z 1.00178489 2008-05-28T09:35Z 1.01229287 2008-06-08T22:02Z 1.01429036 2008-06-14T05:507 1.01505733 2008-07-26T08:322 1.01602762 2008-07-26T08:32Z 1.01602762 2008-08-16T15:022 1.01405248 2008-08-28T15:08Z 1.01189079 2008-09-19T23:37Z 1.00592248 2008-10-12T15:21Z 1.00007217 2008-10-16T01:45Z 0.99845856 2008-10-19T23:40Z 0.99772329 2008-11-07T14:54Z 0.99195488 2008-12-08T15:15Z 0.98597380 2008-12-17T23:52Z 0.98444476
-0.63029

- The initial catalogue contains over 400 predicted arrivals at Earth, and over 100 for Mercury-, Venus-, Mars- and Saturn-directed CMEs.
- Catalogue includes unique id linked to the original CME catalogue.
- The arrival times will be compared to other model results and in situ data in WP4.

