WP2 Update: automatic CME identification

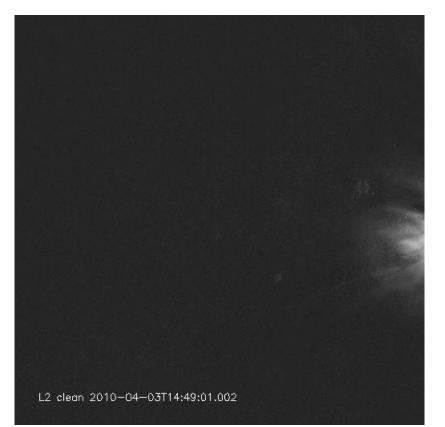
Royal Observatory of Belgium

T2.2 - Automatic cataloguing of STEREO/HI CMEs [Months: 1-36]

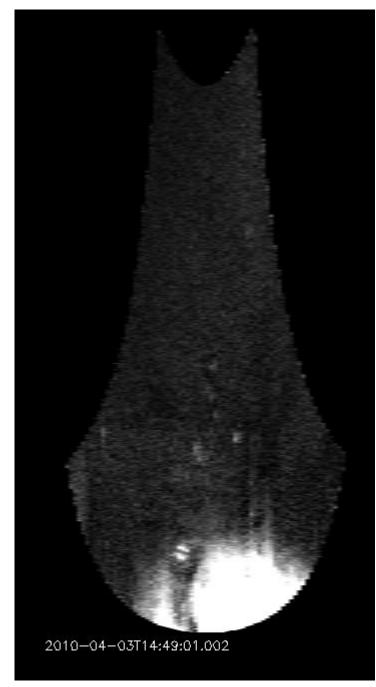
- Investigate the possibility of the automatic detection of CMEs in the heliosphere from STEREO/HI-1 images.
- Never been tried before.
- ROB has experience (**CACTus**) in doing this with LASCO and COR.
- Parameters of the automatically-detected CMEs will be catalogued in an analogous manner to those detected manually.
- T2.3: comparison of both catalogues.

Application of CACTus on STEREO/HI1

Preprocessing


L2 images

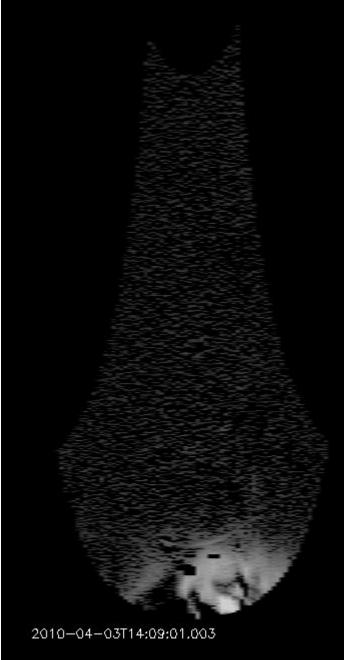
(1-day backgrounds removed)


After some cleaning

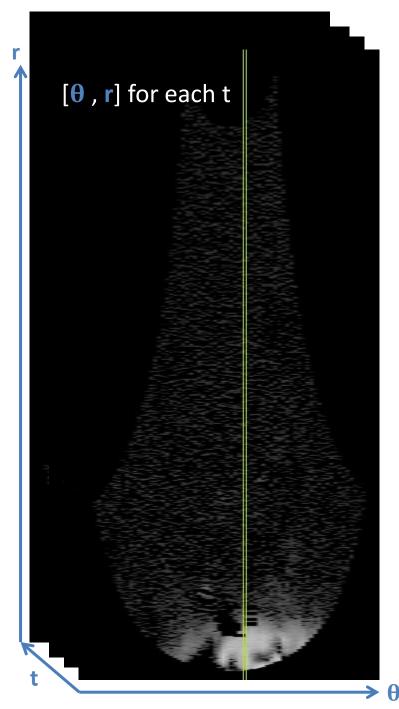
(sigma_filter + filling black strips)

Conversion to polar coordinates Projected distance from Sun (100,000 km/px)

- 1. Conversion of HPC longitudes and latitudes into HPR position angle and elongation with wcs_conv_hpc_hpr.
- 2. Conversion of the elongation into projected distance r = DSUN_OBS * tan(elong)


Angle from solar north

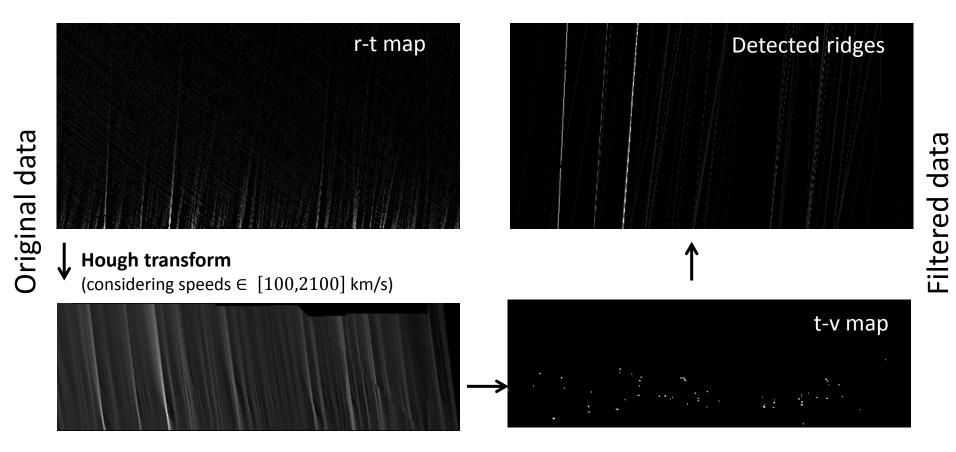
Difference images


Remove noise by median filtering in time in the datacube.

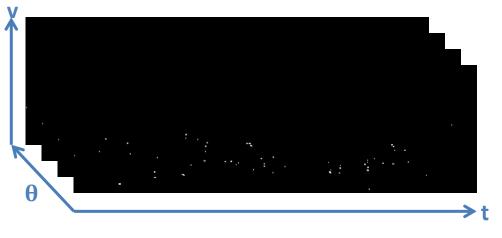
Creation of the difference images (running difference).

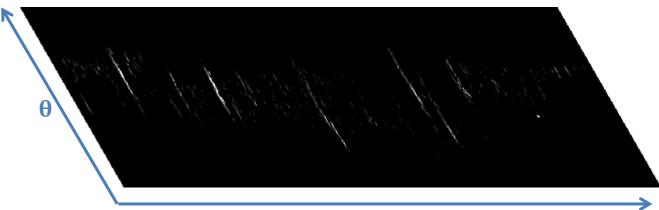
Projected distance from Sun (100,000 km/px)

Angle from solar north


r-t slices

Extraction of r – t slices for each angle (in reality, slices are 2 degrees wide).


CME extraction (1)

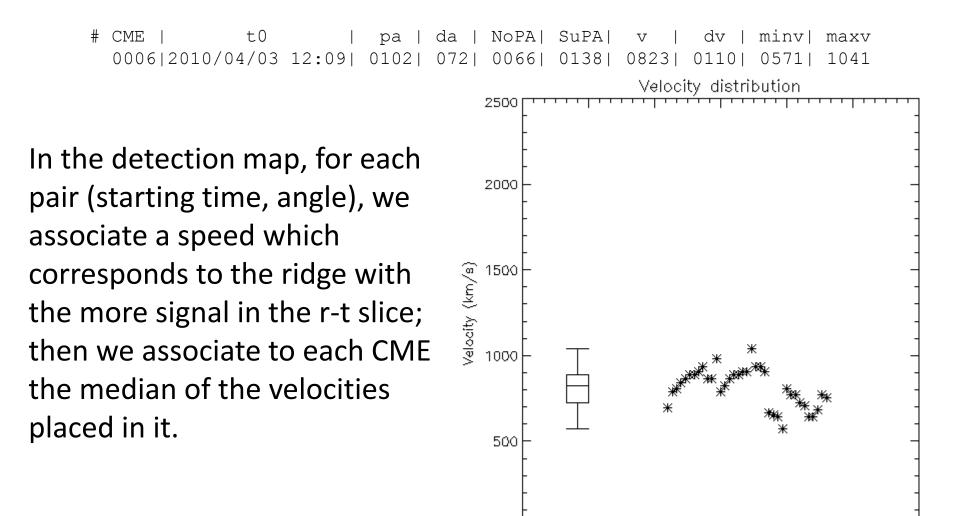

CMEs are seen in r-t slices as bright ridges. From the Hough transform, we keep only the brightest points; this yields a t-v map for each angle.

CME extraction (2)

The t-v maps for all angles are then summed along the v dimension to provide a time–angle map which contains all the information about detected CMEs.

CACTus output: Visualisation

After some thresholding and clustering in the previous timeangle map, we obtain the final detection map in which each color indicates a different CME.



CACTus output: CME Parameters

- Time of first apparition in HI1 images
- Propagation angle angular width
- Median velocity

CME | t0 pa | da | NoPA| SuPA| dv | minv| v I maxv 0025|2010/04/29 13:29| 0115| 010| 0110| 0120| 0283| 0017| 0266| 0313 0008|2010/04/05 12:09| 0080| 020| 0070| 0090| 0268| 00091 02561 0285 0007/2010/04/04 04:09/ 0124/ 024/ 0112/ 0136/ 0397/ 0084 | 0357 | 0562 0006|2010/04/03 12:09| 0102| 072| 0066| 0138| 0823| 0110| 05711 1041 0005|2010/04/02 18:09| 0104| 016| 0096| 0112| 0276| 0397 0075| 0195| 0004|2010/04/02 14:09| 0083| 010| 0078| 0088| 0407| 0033| 0361| 0454 0003|2010/04/02 11:29| 0121| 010| 0116| 0126| 0409| 0101 | 0327 | 0621 0002|2010/04/02 05:29| 0116| 012| 0110| 0122| 0459| 0073| 0316| 0505 0001/2010/04/01 14:49/ 0115/ 010/ 0110/ 0120/ 0427/ 0058/ 0372/ 0544

CACTus output: Speed profile of a cme

90.

Angle from north

The catalog

A software package for 'Computer Aided CME Tracking' (adapted from CACTUS)

CMEs detected by CACTus - /A/2010/04/

Show comparison with the Manual catalog and other level images

:Issued: Fri Mar 20 00:19:07 2015 :Product: CACTus catalogue for HI #-----# Instrument: SECCHI-A | Detector: hi_1 # Minimal CME width: 0010 first hi 1: 2010-03-31T00:09:01.008 20100331 000901 24h1A br01.fts last hi 1: 2010-04-30T23:29:01.005 20100430 232901 24h1A br01.fts #-----# Output: Detected cmemap with the following characteristics: CME: CME number Flow: Flow number. Flows are suspicious detections, their color in the detectionmap is dark blue t0: first apparition in field of view pa: principal angle, counterclockwise from North (degrees) da: angular width (degrees), NPA: Northernmost propagation angle (degrees), SPA: Southernmost propagation angle (degrees), v: median (projected) velocity (km/s) dv: variation (1 sigma) of velocity over the width of the CME # minv: lowest velocity detected within the CME maxv: highest velocity detected within the CME pa da NoPA SuPA v # CME t0 dv | minv| maxv 0025 2010/04/29 13:29 0115 010 0110 0120 0283 0017 0266 0313 0024 2010/04/25 16:49 0095 010 0090 0100 0272 0016 0252 0300 0023 2010/04/24 05:29 0101 014 0094 0108 0213 0037 0205 0295 0022 2010/04/22 23:29 0108 032 0092 0124 0350 0029 0300 0397 0021 2010/04/22 05:29 0106 048 0082 0130 0397 0080 0343 0621 0020 2010/04/20 09:29 0053 010 0048 0058 0389 0017 0361 0416 0019 2010/04/20 02:09 0076 076 0038 0114 0416 0037 0334 0491 0018 2010/04/19 06:49 0096 084 0054 0138 0448 0075 0340 0571 0017 2010/04/15 22:49 0070 016 0062 0078 0330 0047 0239 0368 0016 2010/04/15 08:49 0080 012 0074 0086 0437 0031 0368 0454 0015 2010/04/13 10:49 0081 094 0034 0128 0345 0255 0219 0983 0014 2010/04/12 00:09 0101 022 0090 0112 0361 0043 I 0310 0454 0013 2010/04/10 00:49 0099 038 0080 0118 0312 0034 0239 0354 0012 2010/04/08 18:09 0084 040 0064 0104 0249 0196 0060 0402 0011 2010/04/08 06:49 0093 058 0064 0122 0544 0053 0454 0668 0010 2010/04/06 20:49 0094 012 0088 0100 0283 0119 0268 0520 0009 2010/04/06 04:09 0097 046 0074 0120 0582 0278 0416 1264 0008 2010/04/05 12:09 0080 020 0070 0090 0268 0009 0256 0285 0007 2010/04/04 04:09 0124 024 0112 0136 0397 0084 0357 0562 0006 2010/04/03 12:09 0102 072 0066 0138 0823 0110 0571 1041 0005 2010/04/02 18:09 0104 016 0096 0112 0276 0075 0195 0397 0004 2010/04/02 14:09 0083 010 0078 0088 0407 0033 0361 0454 0003 2010/04/02 11:29 0121 010 0116 0126 04091 0101 0327 0621 0002 2010/04/02 05:29 0116 012 0110 0122 0459 0073 0316 0505 0001 2010/04/01 14:49 0115 010 0110 0120 0427 0058 0372 0544 # Flow pa da NoPA SuPA v | tØ dv | minv| maxv 0010 2010/04/28 22:09 0114 012 0108 0120 0327 0000 0327 0327 0009 2010/04/26 12:49 0102 036 0084 0120 0345 0050 0237 0426 0008 2010/04/14 04:09 0103 018 0094 0112 0376 0037 0319 0437 0007 2010/04/13 18:49 0083 014 0076 0090 0265 0045 0242 0365 0006 2010/04/09 08:49 0071 014 0064 0078 0188 0083 0178 0357 0005 2010/04/06 08:09 0067 014 0060 0074 0301 0011 0287 0319 0004 2010/04/04 23:29 0129 010 0124 0134 0319 0023 0285 0357 0003 2010/03/31 17:29 0110 012 0104 0116 0340 0090 0260 0498 0002 2010/03/31 14:49 0121 014 0114 0128 0405 0064 0357 0505 0001 2010/03/31 12:49 0084 024 0072 0096 1770 0000 1770 1770

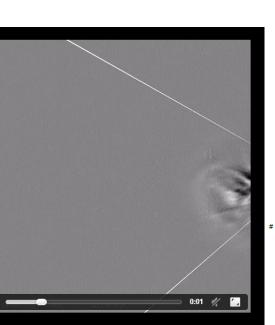
The catalog

A software package for 'Computer Aided CME Tracking' (adapted from CACTUS)

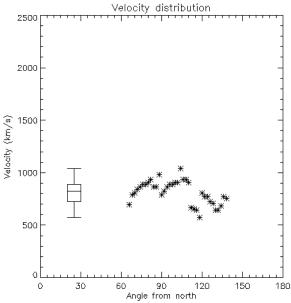
CMEs detected by CACTus - /A/2010/04/

Show comparison with the Manual catalog and other level images

:Issued: Fri Mar 20 00:19:07 2015 :Product: CACTus catalogue for HI #------


- # Instrument: SECCHI-A | Detector: hi_1
- # Minimal CME width: 0010
- #

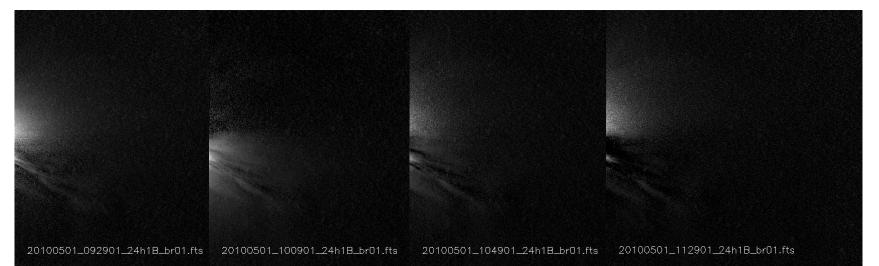
first hi_1: 2010-03-31T00:09:01.008 20100331_000901_24h1A_br01.fts last hi_1: 2010-04-30T23:29:01.005 20100430_232901_24h1A_br01.fts


Output: Detected cmemap with the following characteristics:

- # CME: CME number
- # Flow: Flow number. Flows are suspicious detections,
- # their color in the detectionmap is dark blue
- t0: first apparition in field of view
- pa: principal angle, counterclockwise from North (degrees)
- da: angular width (degrees),
- # NPA: Northernmost propagation angle (degrees),
- # SPA: Southernmost propagation angle (degrees),
- v: median (projected) velocity (km/s)
- dv: variation (1 sigma) of velocity over the width of the CME
- # minv: lowest velocity detected within the CME
- # maxv: highest velocity detected within the CME
- #

			-							
CME	t0	I	pa	da	NoPA	SuPA	v	dv	minv	maxv
0025	2010/04/29	13:29	0115	010	0110	0120	0283	0017	0266	0313
0024	2010/04/25	16:49	0095	010	0090	0100	0272	0016	0252	0300
0023	2010/04/24	05:29	0101	014	0094	0108	0213	0037	0205	0295
0022	2010/04/22	23:29	0108	032	0092	0124	0350	0029	0300	0397
0021	2010/04/22	05:29	0106	048	0082	0130	0397	0080	0343	0621
0020	2010/04/20	09:29	0053	010	0048	0058	0389	0017	0361	0416
0019	2010/04/20	02:09	0076	076	0038	0114	0416	0037	0334	0491
0018	2010/04/19	06:49	0096	084	0054	0138	0448	0075	0340	0571
0017	2010/04/15	22:49	0070	016	0062	0078	0330	0047	0239	0368
0016	2010/04/15	08:49	0080	012	0074	0086	0437	0031	0368	0454
0015	2010/04/13	10:49	0081	094	0034	0128	0345	0255	0219	0983
0014	2010/04/12	00:09	0101	022	0090	0112	0361	0043	0310	0454
0013	2010/04/10	00:49	0099	038	0080	0118	0312	0034	0239	0354
0012	2010/04/08	18:09	0084	040	0064	0104	0249	0060	0196	0402
0011	2010/04/08	06:49	0093	058	0064	0122	0544	0053	0454	0668
0010	2010/04/06	20:49	0094	012	0088	0100	0283	0119	0268	0520
0009	2010/04/06	04:09	0097	046	0074	0120	0582	0278	0416	1264
0008	2010/04/05	12:09	0080	020	0070	0090	0268	0009	0256	0285
0007	2010/04/04	04:09	0124	024	0112	0136	0397	0084	0357	0562
0006	2010/04/03	12:09	0102	072	0066	0138	0823	0110	0571	1041
0005	2010/04/02	18:09	0104	016	0096	0112	0276	0075	0195	0397
0004	2010/04/02	14:09	0083	010	0078	0088	0407	0033	0361	0454
0003	2010/04/02	11:29	0121	010	0116	0126	0409	0101	0327	0621
0002	2010/04/02	05:29	0116	012	0110	0122	0459	0073	0316	0505
	2010/04/01	14:49	0115	010	0110	0120	0427	0058	0372	0544
Flow	t0		pa	da	NoPA	SuPA	v	dv	minv	maxv
	2010/04/28	22:09	0114	012	0108		0327	0000	0327	0327
	2010/04/26	12:49	0102	036	0084		0345	0050	0237	0426
	2010/04/14		0103	018	0094		0376	0037	0319	0437
	2010/04/13	18:49	0083	014	0076		0265	0045	0242	0365
0006	2010/04/09	08:49	0071	014	0064	0078	0188	0083	0178	0357
	2010/04/06	08:09	0067	014	0060		0301	0011	0287	0319
0004	2010/04/04	23:29	0129	010	0124	0134	0319	0023	0285	0357
	2010/03/31	17:29	0110	012	0104		0340	0090	0260	0498
0002	2010/03/31	14:49	0121	014	0114		0405	0064	0357	0505
0001	2010/03/31	12:49	0084	024	0072	0096	1770	0000	1770	1770

-c10 16:49 2010-04-06


How well does it work ?

A quick comparison of the results for 2010 STEREO-A/HI1 with the manual catalogue shows that we were able to find more than 80% of the CMEs listed in the manual catalogue.

However, we do have quite a lot of additional detections, which have not been investigated yet.

And for STEREO-B ?

Much more false detections. Seems to be due to bright & dark alternations in the images. We haven't found a way yet to either correct the images or discard those bad detections.

Other issues

- CME width is sometime underestimated, maybe because the CME becomes larger while propagating in the HI1 field of view.
- Merging / Splitting of CMEs
- To avoid too much false detections, we have to discard detections for which the computed width is below 10 degrees, we thus miss the narrow CMEs.

Deliverables

- D2.1: Catalogue of observational parameters of HI-1 manually identified CMEs (month 36, but 1st release month 9)
- D2.2: Report on the feasibility of automatic identification of CMEs in HI-1 data (month 12)
- D2.3: Report on the inter-comparison of the manual and automated CME catalogues (month 18)
- D2.4: Report in which the manual and automated HI CME catalogues are compared to pre-existing coronagraph CME catalogues (month 24)