Progress on WP4 - Verifying the kinematic properties of STEREO/HI CMEs against in-situ CME observations and coronal sources

HELCATS month 6 meeting Brussels November 2014

Christian Möstl & Peter Boakes

Institute of Physics, University of Graz

Austria

christian.moestl@uni-graz.at peter.boakes@uni-graz.at

- WP4 runs months 10-36
- builds on WP2+3
- linked catalogue feeds into WP6+7
- Tasks:
 - 4.1 coronal sources, Göttingen: STEREO, SOHO, SDO, Proba2
 - 4.2 in situ data: Graz, Helsinki, Toulouse, Göttingen, Imperial categorization of ICMEs with WP3 results (geometrical modeling): STEREO, ACE, Wind, MESSENGER, VEX, Ulysses, MSL
 4.3 statistical analysis: Graz, Toulouse, ROB, Göttingen, Helsinki
- Deliverables:

M24: Establishing an **online catalogue of potentially associated solar source and in-situ** phenomena for the timeframe 2007-2015 (this is the first catalogue of its kind; there are many separate CME / ICME lists)

M30: Report on **statistical analysis and comparison of HI results with coronal and in situ data**; assessment of **forecasting accuracy**.

IWF/ÖAW C. Möstl

Progress so far

2nd quarterly Report August - October 2014

UNI GRAZ

WP4 deals with establishing an on-line catalogue of CMEs that connects various solar, heliospheric imaging (HI) and in-situ datasets. A number of the partners have further worked on preparations for this WP.

- At UNIGRAZ, Peter Boakes was hired as a PostDoc researcher. The necessary updates to the HI catalogue from RAL have been provided to calculate CME parameters at in situ spacecraft. We have begun to check how the parameters in this list relate to the CME parameters observed by the different in situ spacecraft.

- At UH, IDL routines provided by CDAWeb were applied to get the in-situ data without manual downloading, and tested by students; software (C++/Python) for creating high quality plots was coded.

- ROB has been preparing the IDL routines that will be used in Task 4.3 in oder to link forward modelling results to in situ data.

- Preliminary work at UPS focused on redetermining Magnetic Cloud boundaries from WIND and STEREO, which will eventually constitute a new MC list for broad usage, to be accessible in AMDA.

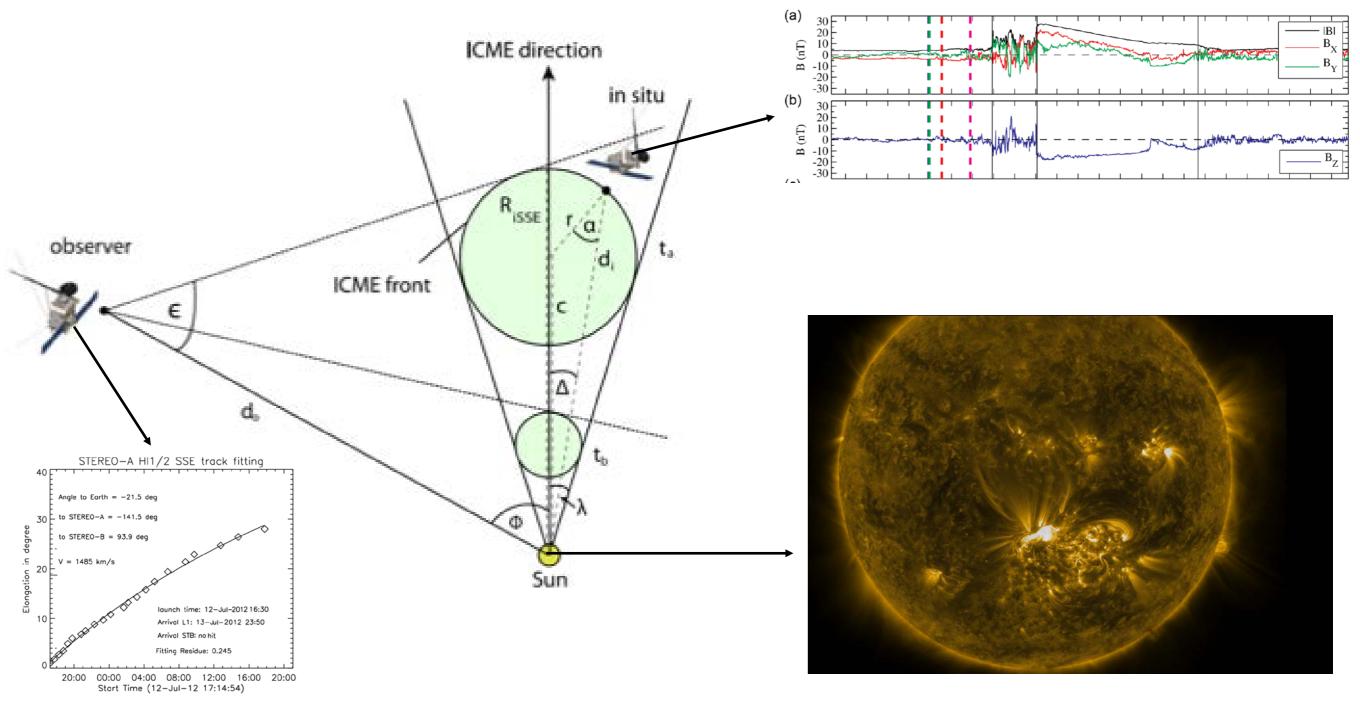
- At UGOE, the IDL minimum variance analysis (MVA) routines were further upgraded to derive additional magnetic cloud parameters. More test runs with ACE data were done and the MVA is being applied to sample events. The MVA routine's output were re-formatted for further usage.

First Quarterly report May-Jul 2014:

A number of the partners have commenced preparatory work for this WP.

- UNIGRAZ and UH, where the in-situ data will mainly be processed, have started to download portions of data from the Wind, ACE, STEREO-A and B, Venus Express, MESSENGER, and Ulysses spacecraft. UNIGRAZ, UH and IMPERIAL have carried out initial tests of software in IDL to analyse and process the in-situ data into different formats.

- A future incorporation of the in-situ time series, in the appropriate format, into the online AMDA tool has been discussed with UPS.


At UGOE, the IDL minimum variance analysis (MVA) routines were installed. The routines were adapted to process ACE data with different time resolution. Some test runs with ACE data were done, and the MVA is being applied to sample events.
A sample of the HI catalogue (from WP2 and WP3) has been checked by UNIGRAZ for comparison to the in situ data, and inecessary updates to the HI catalogue have been discussed with STFC.

CME modeling with HI

- Self Similar Expansion Fitting technique (for the moment we use 30° half width)
- Davies et al. 2012 ApJ, Möstl et al. 2013 Sol. Phys.

CME parameters (see wiki)

parameters will likely include:

solar+coronagraph (some taken from WP3)

- flare class and peak time (if flare happened)
- position of source region (if identified)
- source region characterization (e.g. AR neutral line orientation, phenomena observed like EUV wave, post-eruption arcades) (if identified)
- time of first image of CME in coronagraphs
- initial CME speed
- initial CME direction

and the second second

HI (arrival times, hits, speeds taken from WP3)

- CME speed
- CME direction
- CME arrival time at each spacecraft
- CME launch time

The final product of the online catalogue (Deli in April 2016) will likely consist of these 3 lists + the link between them through the CME event number (better designs always welcome!)

in situ

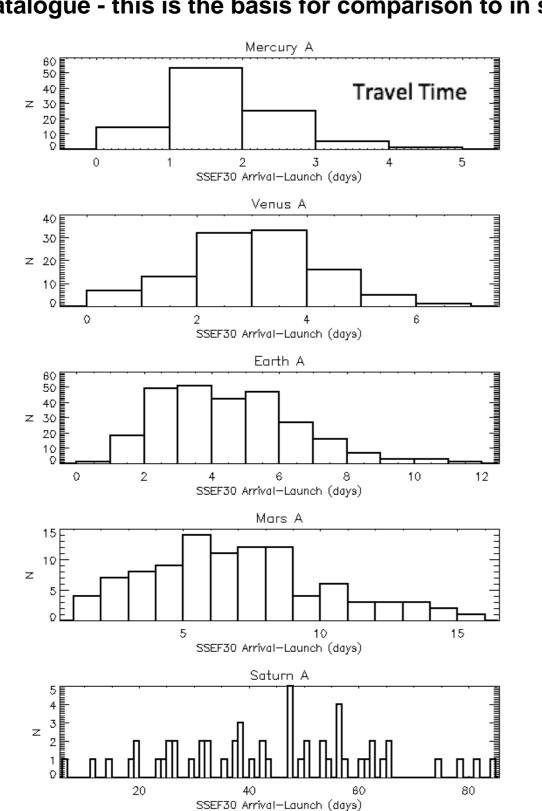
- spacecraft that detected the ICME, and its heliospheric position
- shock arrival time
- start and end times of any magnetic ejecta
- shock stand-off distance
- average magnetic field and plasma parameters (density, temperature) in sheath and ejecta
- max amplitude of magnetic field
- size of ejecta
- expansion speed of ejecta (Demoulin parameter)
- categorization of surrounding solar wind (HCS, high speed streams)
- general categorization of ejecta (e.g. magnetic clouds, flux ropes, magnetic cloud like, complex ejecta)
- flux rope type (SEN, NWS etc.) and chirality (if flux rope present)
- flux rope axis orientation (flux rope model needed)
- impact parameter (FR model)
- magnetic flux content of MCs (poloidal/toroidal, with FR model)
- supra thermal electron behavior

Lists for WP4 product

The ISEST Master CME List

We encourage all users of the wiki to add to this list to create a list compiled from everybody for community use. For information on how to add an event, go to Editing the ISEST Master List.

ICME EVENT START	ICME EVENT END	CME IN LASCO	ICME TY	/PE	AR	SURFACE	FLARE MAGNITUDE	FLARE ONSET TIME	CDAW VEL C2	SEE	DS SEEDS		AVG. VEL.	VELOCITY	TRANSIT	DST		EJECTA START	QUA		
05/21/200 21:00:00	STERE	O-A_EAR	TH_ARRI\	ALS_	SSEF3	0.txt - N	otepad													stl initial tes	
11/19/2007	File Ed	it Forma	t View	ст				C CCEEDO	tut N	oton	ad						in	eitu a	rrivale	from HI / V	VP3
17:00:00		20071		51	EREO	-A_VEINU	JS_ARRIVAL	.5_55EF30.	txt - IN	otep	ad									ntificatio	n number
12/17/2008		2008(File	Edit	Format	View He	elp													
03:30:00	HCME_A		0521	HCME			516_01	7.4	36					51Z 0.7			-3.808		0.37689	ex in deg	rees
01/26/2009		2008(0602	HCME	_		521_01	24.6	26					46Z 0.7			-3.650		6.38539		
05:00:00		2008(0607_	hcme hcme			523_01 529_01	6.3 25.0	23 30						20517 21292		-3.587		5.28182 0.97282		
02/03/2009	HCME_A		0/21_	HCME			612_01	16.9	28					27Z 0.7			-2.280		2.10314	(9)	
09/30/200	HCME_A		0820	HCME			711_01	26.2	28					39Z 0.7			0.606		3.80658	$\min B_z$	min Dst
01:00:00	HCME_A		0012	HCME			126_01	15.7	43					43Z 0.7			3.839		3.32145		IIIII DSt
10/29/2009	HCME_A	20081	1004_	HCME HCME	_		.216_01 .227_01	16.6 7.9	31 45					11Z 0.7 31Z 0.7			3.039 2.168		1.40023 4.86487	-9.5	
02:00:00	HCME_A		1010	HCME			101_01	26.8	21					21Z 0.7			1.678		1.78283	-8.6	
11/14/2009	HCME_A		1103	HCME			110_{01}	1.2	43	9				29Z 0.7			0.824		6.84309	-11.3	
00:00:00		20081	1202	HCME	_		114_01	9.3	48						21020		0.367		4.32077	-7.6	
01/01/2010	HCME_A	20081	1212	HCME HCME			122_01 129_01	2.3 1.6	43 33					48Z 0.7 47Z 0.7			-0.480		9.67673 5.39431	-6.7	
22:00:00	HCME_A		1218_	HCME			131_01	28.4	25					53Z 0.7			-1.412		4.38859	-9.4	
04/05/201(08:00:00		20081 2009(1228_	HCME		20090	211_01	19.3	22	6				01Z 0.7			-2.447		7.74287	-14.6	-81
04/11/2010	HCME_A		0107	HCME			213_01	21.7	27					23Z 0.7			-2.646		6.27491	-8.6	-51
12:30:00		2009	0100	HCME HCME			218_01 305_01	$17.8 \\ 19.9$	31 25					38Z 0.7 30Z 0.7	18455		-3.017		3.22642	-12.9	-85
05/28/2010	HCME_A	2009(HCME			310_01	1.0	29		2009-				18965		-3.834		1.03886	-2.8	
02:00:00	21:00:00	18:30:00	Multiple	HCME	_A	20090	317_01	2.1	36	9					19436		-3.848	- 804	7.05108	-30,2	
06/21/2010	06/22/2010	06/16/2010	MC	HCME		_20090	318_01	17.1	27	4	2009-	03-23	300.04	43Z 0.7	19596		-3.828	322 -	5.90258	-11.2	-67
08:00:00	13:00:00	15:07:00			`	OLY IILY			km/s		km/s	km/s	000.04	000.4 101/3	112.00.00			08:00:00	31.8		
08/03/2010 17:00:00	08/05/2010 08:00:00	08/01/2010 03:54:00	SH+Multip	le EJ 1	1092	N20 E36	СЗ	08/01/2010	850 km/s	-	670 km/s	528 km/s	529.92	511.5 km/s	61:06:00	-70	08/04/2010 05:00:00	08/04/2010 10:00:00	1 10.1		-107
		12/23/2010	1				<u>.</u>		286	152		274						12/28/2010	23.3	3 -21.4	-69
10:00:00		05:12:00		E -		S15 W18	-	-	km/s	km/s		km/s	331.63	353.7 km/s	124:48:00	-43	18:00:00	10:00:00	3 24.3		-132
09	2 200	071231		1/			vina	0.904			30			22 03:20				20 ± 17	30.8		-69
09	200	080102		18			Wind	0.984	4		33	20	12 Jan	24 14:36	($538 \pm$	34	8 ± 2	30.5	5 -15.7	-73
09		080122		19		1	Wind	0.992	4		41	20	12 Mar	7 03:28	-	$501 \pm$	65	14 ± 5	18.8	-18.2	-74
				20		1	Wind	0.992	7		42	20	12 Mar	8 10:24	($579 \pm$	44	12 ± 4	30.4	-18.4	-131
09	200	080129		21		1	Wind	0.993	8		6	20	12 Mar	12 08:28	3 4	189 ±	23	24 ± 9	29.2	2 -23.6	-50
10	00 200	080212		22		1	Wind	1.005	5		20	20	12 Apr	23 02:14	. 3	383 ±	8	24 ± 7	15.9	-15.3	-108
				23		1	Wind	1.016	D		28	20	12 Jun	16 19:34	4	194 ±	29	50 ± 24	41.0) -21.0	-71
IVVF	-/ÖAW	C. Möstl		24		1	Wind	1.016	5		22	20	12 Jul	14 17:38	($517 \pm$	39	16 ± 6	27.1	-18.3	-127



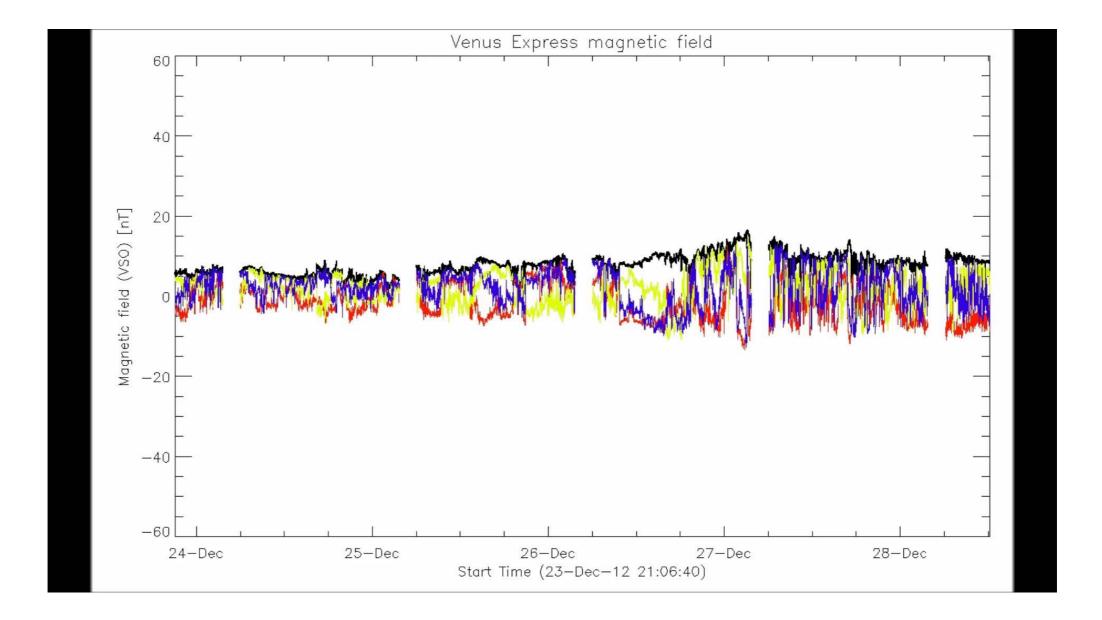
IV

Samples from WP3

z

Peter and I made a first list of arrival time calculations from the HI catalogue - this is the basis for comparison to in situ in WP4

Mercury Arrivals Stereo A 30 E ահահահահահա 20 20 215 10 10 0 0 0 500 1500 2000 3000 1000 2500 SSEF30 Corrected Speed (km/s) Venus Arrívals Stereo A 40 ≣ 30 ₽ Z 20Ē 10≣ ΩĒ 500 1000 1500 2000 3000 0 2500 SSEF30 Corrected Speed (km/s) Earth Arrivals Stereo A 80 E 60 E z 40 F 20 E Ωİ 500 1500 2000 3000 0 1000 2500 SSEF30 Corrected Speed (km/s) Mars Arrivals Stereo A 25 IIII 20 IIII 15 IIII 10 III առեսորություն 500 1000 1500 3000 0 2000 2500 SSEF30 Corrected Speed (km/s) Saturn Arrivals Stereo A 20 E 15Ē z 10 0 500 1000 1500 2000 2500 3000


SSEF30 Corrected Speed (km/s)

Corrected Speed

Sample how processed VEX data looks like - here the intervals inside Venus bow shock are removed, so only solar wind is plotted

Technical issues

Data sources

UN

STEREO:	CDAweb (UH)	
ACE, Wind:	CDAweb (UH)	
MESSENGER:	1 min resolution from PDS website at UCL	A (UNIGRAZ)
VEX:	1 min res. ftp in house at SRI, Graz	(UNIGRAZ)
ULYSSES:	1 hour res. ftp at NSSDC or SPDF	(UNIGRAZ)
MSL, MAVEN:	To be decided, MAVEN available mid 2015	(UNIGRAZ)

Availability (2007-2015)

STEREO-A/B, L1 (ACE, V	Vind): 2007-	(mag and plasma)
MESSENGER:	2007-	(mag, in orbit at Mercury from 3/2011)
VEX:	2007 -	(mag)
Ulysses:	2007	(mag/plasma, last ecliptic pass)
MSL/MAVEN:	2012 / 201	15 - (radiation experiment / mag /plasma)
5		

- data to plots/analysis: in IDL for MESSENGER, VEX, ULYSSES to do: MSL
- data to plots/analysis: Wind, STEREO-A/B Helsinki CDAweb -> IDL
- WP5 CIRs (Toulouse) will use similar in situ data, processed data will be available as IDL save files, ASCII for AMDA, ... or any other format you like!

IWF/ÖAW C. Möstl

Upcoming tasks

until February 2015

UNI

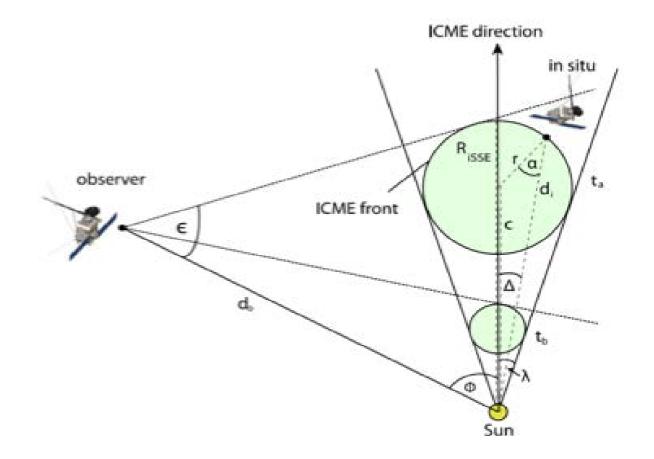
- (1) process all the (level 2) in situ data until end of Feb 2015 into IDL
- (2) start testing on how connect the "arrival catalogue" to the solar + in situ data
- (3) use the wiki for a platform of the discussions

start of WP4 in month 10 = March 2015:

- take available ICME (UNIGRAZ and UH) and solar lists (UGOE), decide on parameters and criteria
- process all in situ data to final versions of IDL .sav files, visualize in situ data
- make ICME list for each spacecraft with decided parameters
- link small portions of catalogue solar HI in situ, iterate from there

initial versions of **complete linked catalogue**: fall of 2015; iterate until February 2016 (Deli for catalogue: 30 April 2016 with description)

Mind **KISS principle,** start simple, and level of complexity can be increased later, also look at learning curve for outsiders for using the products!


THANKS!

Arrival Time Catalogue

- Using CME catalogue of WP2, and geometric fitting results of WP3.1
- Derive arrival times at Mercury, Venus, Earth, Mars & Saturn
- Using SSEF lambda of 30 degrees
- Hits (delta < lambda)
- Corrected speed Möstl & Davies, 2012 $V_{iSSE} = V_{SSE} \frac{\cos \Delta + \sqrt{\sin^2 \lambda \sin^2 \Delta}}{(1 + \sin \lambda)}$
- Arrival = distance/speed

Arrival Time Catalogue

Filename-Stereo A or B, target, model and lambda

CME Identifier (WP 3/2 CME list)	Distance Apex	to Arrival sp / (km/s)	eed	e	Target location in HEEQ
STEREO-A_EARTH	_ARRIVALS_SSEF30.txt -	- Noterad			
File Edit Format	View Help				
HCME_A_200712 HCME_A_200802 HCME_A_200805 HCME_A_200806 HCME_A_200806 HCME_A_200807 HCME_A_200808 HCME_A_200808 HCME_A_200808 HCME_A_200810 HCME_A_200810 HCME_A_200811 HCME_A_200812 HCME_A_200812 HCME_A_200812 HCME_A_200812 HCME_A_200812 HCME_A_200812 HCME_A_200901 HCME_A_200901	20_01 20.0 13_01 23.0 09_01 25.0 21_01 20.0 02_01 28.0 07_01 24.0 21_01 4.0 07_01 29.0 20_01 27.0 13_01 21.0 04_01 26.0 03_01 13.0 03_01 21.0 18_01 6.0 28_01 3.0 01_01 25.0 07_01 9.0 001_01 25.0	260 2007-12-26T15:10 271 2008-02-19T22:16 214 2008-04-17T14:31 266 2008-05-28T09:35 261 2008-06-08T22:02 277 2008-06-14T05:50 363 2008-07-26T08:32 194 2008-08-16T15:02 194 2008-08-28T15:08 282 2008-09-19T23:37 221 2008-10-12T15:21 301 2008-10-19T23:40 383 2008-11-07T14:54 240 2008-12-08T15:15 312 2008-12-08T15:15 312 2008-12-23T14:26 318 2009-01-01T23:12 228 2009-01-09T01:10 272 2009-01-13T12:04 332 2009-01-14T04:52 363 2009-02-04T14:36	Z 0.98730455 -6.74196 Z 1.00178489 -5.99623 Z 1.01229287 -1.84155 Z 1.01429036 -0.48398 Z 1.01505733 0.20600 Z 1.01602762 4.95954 Z 1.01405248 6.24936 Z 1.01189079 6.85920 Z 1.00592248 7.21837 Z 1.00007217 6.51011 Z 0.99845856 6.17808 Z 0.99772329 6.00601 Z 0.99845856 6.17808 Z 0.99772329 6.00601 Z 0.99195488 4.13042 Z 0.98597380 0.77709 Z 0.98394015 -1.32583 Z 0.98329567 -3.10690 Z 0.98332847 -3.94857	$\begin{array}{c} 0.00000\\ -0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ -0.00000\\ -0.00000\\ 0.0000\\ 0.0$	

- **HI** (arrival times, hits, speeds taken from WP3)
 - CME speed
 - CME direction
 - CME launch time