

HELCATS

WP 4 – Task 4.1

Comparing to Coronal Sources

Volker Bothmer

HELCATS Kick-Off Meeting, 14-15 May 2014, RAL, Didcot, UK

HELCATS Kick-Off

Task 4.1 - Objectives

Task 4.1: Comparing to coronal sources (Task leader: UGOE)

- Identification of the low coronal and photospheric source region signatures of the CMEs in the STEREO/HI catalogue (WP2 and 3): flares
 - filaments, prominences
 - EUV post-eruption arcades
 - Coronal dimmings
 - EUV waves
 - Bipolar regions
- The modelling methods used on HI data (in WP3) will produce windows for CME launch time and position on the solar disk
- Instruments used: STEREO/EUVI, SOHO/EIT+MDI, SDO/AIA+HMI, Proba2

Task 4.1 - Objectives

Task 4.1: Comparing to coronal sources (Task leader: UGOE)

- Identification of the low coronal and photospheric source region signatures of the CMEs in the STEREO/HI catalogue (WP2 and 3): flares
 - filaments, prominences
 - EUV post-eruption arcades
 - Coronal dimmings
 - EUV waves
 - Bipolar regions
- The modelling methods used on HI data (in WP3) will produce windows for CME launch time and position on the solar disk
- Instruments used: STEREO/EUVI, SOHO/EIT+MDI, SDO/AIA+HMI, Proba2

Evolution and Morphology of E-Limb CMEs

Evolution and Morphology of W-Limb CMEs

5

Filaments, Arcades, CMEs and Variation of the Photospheric Magnetic Flux in the Source Region

A detailed study has started to investigate the evolution of the photospheric flux in the source regions of CMEs (Tripathi, Bothmer, Cremades, A&A, 422, 307-322, 2004).

Bothmer & Zhukov, 2007

MDI

Bipolar Regions as CME Source Regions

Cremades & Bothmer, A&A, 422, 307-322, 2004

Möstl et al., 2010

SECCHI HI A observations and Wind measurements

Time-Elongation Maps

 Built stacking slices of difference images. Solar wind transients appear as white tracks in the time elongation plots (jmaps)

• Manual selection of points along the tracks yields the temporal variation in elongation angle of the feature's front

Courtesy: L. Volpes, J. Davies

03-04.2010 CME

 Originated from NOAA AR11059 (S23W05) and associated to a B7.4 flare detected by GOES at 09:04 UT

• Detected by the STEREO A and B coronagraphs and heliospheric imagers

Courtesy: L. Volpes

Proba2 Observations of CME Onset

Coronal Waves

21 March 2011

Not in event list

Rouillard et al., 2012

HELCATS Kick-Off

EUV wave expansion – April 7, 1997; SOHO/EIT

Bothmer et al., 1997

Shock wave expansion – Feb 25, 2014

Courtesy: E. Kraaikamp, ROB, Solar Demon, AFFECTS